Global unitary fixing and matrix-valued correlations in matrix models
نویسندگان
چکیده
We consider the partition function for a matrix model with a global unitary invariant energy function. We show that the averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the same when calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define matrixvalued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the standard Faddeev-Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete Faddeev-Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invariance of the unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued correlation functions.
منابع مشابه
An interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers
The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...
متن کامل(T,S)-BASED INTERVAL-VALUED INTUITIONISTIC FUZZY COMPOSITION MATRIX AND ITS APPLICATION FOR CLUSTERING
In this paper, the notions of $(T,S)$-composition matrix and$(T,S)$-interval-valued intuitionistic fuzzy equivalence matrix areintroduced where $(T,S)$ is a dual pair of triangular module. Theyare the generalization of composition matrix and interval-valuedintuitionistic fuzzy equivalence matrix. Furthermore, theirproperties and characterizations are presented. Then a new methodbased on $tilde{...
متن کاملNew Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملDynamical Correlations for Circular Ensembles of Random Matrices
Circular Brownian motion models of random matrices were introduced by Dyson and describe the parametric eigenparameter correlations of unitary random matrices. For symmetric unitary, self-dual quaternion unitary and an analogue of antisymmetric hermitian matrix initial conditions, Brownian dynamics toward the unitary symmetry is analyzed. The dynamical correlation functions of arbitrary number ...
متن کاملUnitarity condition method for global fits of the Cabibbo-Kobayashi-Maskawa matrix
We report on an exact method for global fits of the CKM matrix by using the necessary and sufficient conditions the data have to satisfy in order to find a unitary matrix compatible with them, and this method can be applied to both quark and lepton CKM matrices. The key condition writes −1 ≤ cos δ ≤ 1 where δ is the phase that encodes the CP violation, and it is obtained when one describes the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003